

Válvula de equilibrado dinámico y control independiente de la presión OPTIMA Compact - Serie Veriflow DN10-DN50

Aplicación

La válvula de control independiente de la presión Frese Optima Compact de la serie Veriflow (PICV) se utiliza para el control preciso de la temperatura en instalaciones de calefacción y refrigeración, con fan-coil, unidades de tratamiento de aire y en otros tipos de unidades terminales.

El diseño único de la toma P/T permite verificar tanto el caudal, como la mínima presión diferencial en toda la válvula con el fin de obtener un óptimo ahorro de energía de la bomba.

La válvula Frese Optima Compact de la serie Veriflow proporciona un control proporcional, con plena autoridad en toda la carrera, independientemente de las fluctuaciones de la presión diferencial del sistema.

Frese Optima Compact de la serie Veriflow combina una válvula de equilibrado dinámico con ajuste externo, una válvula reguladora de presión diferencial y una válvula de control proporcional con autoridad total.

La válvula Frese Optima Compact de la serie Veriflow consigue de forma sencilla el control de 100% del caudal de la instalación, mientras proporciona un alto confort y ahorro de energía. Además, no requiere reajustes en el caso de ampliación del sistema y dispone de una gran flexibilidad ante modificaciones en la capacidad del mismo.

El ahorro de energía está garantizado gracias al control óptimo y a la disminución del caudal y la presión de la bomba. El salto térmico se incrementa gracias a la rápida respuesta y al incremento de la estabilidad del sistema.

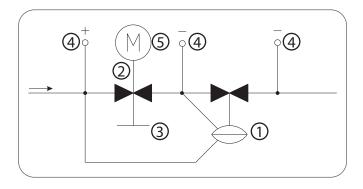
Beneficios

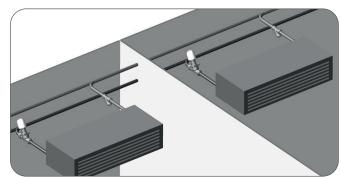
DISEÑO

- Menos tiempo a la hora de definir el material necesario para equilibrar el sistema, sólo se requiere el caudal.
- No es necesario calcular la autoridad de la válvula. Siempre es 1.
- · Flexibilidad ante posteriores modificaciones.

EN LA INSTALACIÓN

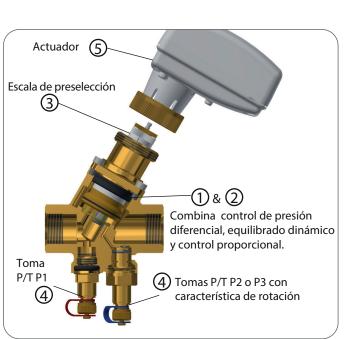
- No se requieren válvulas de regulación en la instalación cuando se emplea la válvula Frese Optima Compact de la serie Veriflow. La válvula se instala en las unidades terminales.
- Se reduce el número total de válvulas a utilizar por su diseño compacto 3 en 1.
- Minimización del tiempo necesario para el ajuste por tratarse de un sistema de equilibrado dinámico.
- No se requieren longitudes mínimas rectas ni antes ni después de la válvula.


FUNCIONAMIENTO


- Los usuarios finales obtienen un elevado grado de confort gracias al control preciso de la temperatura.
- Vida útil más larga gracias al menor número de movimientos del actuador.

Ventajas

- Diseño único de la toma P/T que permite verificar tanto el caudal como la mínima presión diferencial.
- El preajuste de la válvula no interfiere en la carrera; siempre se trabaja con la carrera total, independientemente del ajuste.
- La presión diferencial constante a través del componente de control proporcional garantiza el 100 % de la autoridad.
- Por tratarse de equilibrado dinámico, se elimina cualquier sobrecaudal que se pudiese producir debido a la fluctuación de la presión en la instalación.
- · Actuador electrotérmico todo/nada o proporcional 0-10 V,
- · normalmente cerrado.
- Compatible con actuadores electrotérmicos On/Off o 0-10V, normalmente cerrados. También compatible con actuadores mecánicos 0-10V, (lineal o logarítmico) o control a 3 puntos
- Máxima presión diferencial 800 kPa.
- Grandes caudales con una presión diferencial mínima debido al avanzado diseño interior de la válvula.
- Dimensiones reducidas gracias a su diseño compacto.
- · Gran precisión en el ajuste mediante una escala numérica.



Diseño

El diseño de la Frese Optima Compact de la serie Veriflow combina una excelente actuación con un cuerpo pequeño y compacto. Los principales componentes de la válvula son:

- 1. Componente para el control de la presión diferencial
- 2. Componente de control proporcional.
- Escala de preselección (no accesible una vez montado el actuador).
 - a. Rango de caudal bajo/alto
 - b. Carrera:
 - 2,5 mm 5 mm 5,5 mm
- 4. Tomas P/T (opcionales).
- 5. Actuador.

Funcionamiento

(3)

Antes de instalar el actuador en el cuerpo de la Frese Optima Compact de la serie Veriflow, debe limpiarse la instalación, y ajustarse el caudal de la válvula.

La preselección del caudal es muy sencilla, ya que sólo se requiere consultar la gráfica correspondiente de caudal/ajuste. Una vez ajustado el caudal, se monta el actuador y de esta manera la válvula ya está lista para operar.

Para un consumo de energía lo más reducido posible, se recomienda comprobar la presión diferencial en la válvula más desfavorable de la instalación y ajustar la velocidad de la bomba.

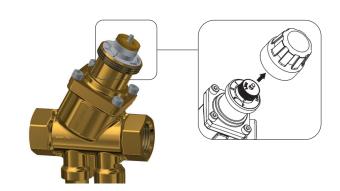
Presión de funcionamiento

La válvula Frese OPTIMA Compact de la serie Veriflow (DN10 a DN50) puede trabajar a una presión máxima de 800kPa (8 bar).

Presión de cierre

La válvula Frese OPTIMA Compact de la serie Veriflow es capaz de cerrar con las siguientes presiones diferenciales según EN 1349 Clase IV:

DN10 a DN25: 600 kPa (6 bar) – basado en un actuador con par motor de 100N


 ${\rm DN10\,a\,DN25:800\,kPa}$ (8 bar) - basado en un actuador con par motor de 160N

DN25L a DN32: 800 kPa (8 bar) - basado en un actuador con par motor de 100N

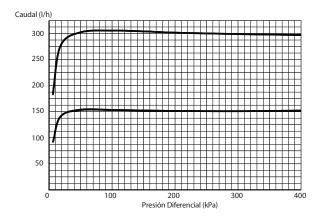
 ${\rm DN40\,a\,DN50:\,800\,kPa}$ (8 bar) - basado en un actuador con par motor de $400{\rm N}$

Función de corte

Cuando se utiliza el tapón roscado en las válvulas Frese OPTIMA Compact de la serie Veriflow de DN10 a DN32, se pueden utilizar como válvulas de corte para una presión de hasta 10 bar.

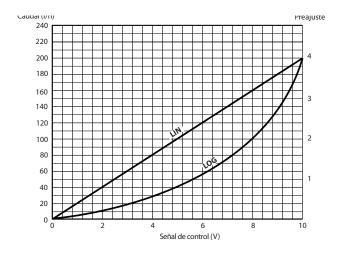
Principio de funcionamiento

El innovador diseño de la Frese Optima Compact de la serie Veriflow garantiza el control proporcional con el 100% de la autoridad en cualquier situación.

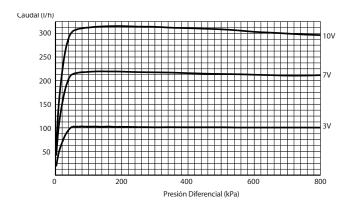

En la Frese Optima Compact de la serie Veriflow se producen dos movimientos independientes, uno para el ajuste de la consigna y otro para el control proporcional del caudal. El ajuste del caudal se efectúa mediante un giro radial del área de entrada, no interfiriendo en la longitud de la carrera de la válvula. En el control proporcional, el asiento de la válvula efectúa un movimiento lineal de la totalidad de su carrera.

Mientras que el componente de control garantiza la acción proporcional independientemente del caudal ajustado, el equilibrado dinámico asegura que nunca se exceda el caudal preaiustado.

A pesar de las fluctuaciones de presión de la instalación, el caudal de proyecto se mantiene constate hasta una presión máxima de 800 kPa

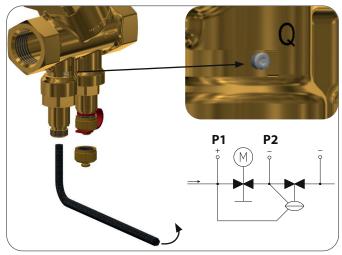

Caudal/Presión Diferencial.

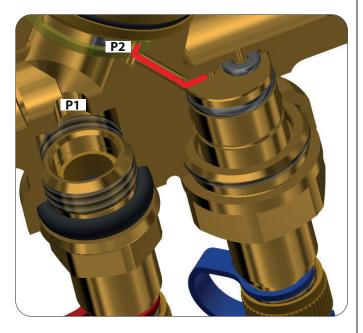
Ajuste del caudal: 300 l/h, 150 l/h


Caudal/Señal de control.

Ajuste del caudal: 200 l/h

Caudal/Presión diferencial.

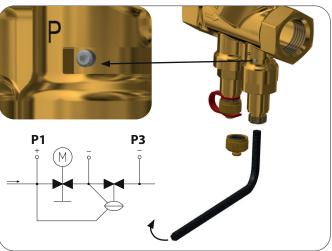

Señal de control: 3 V, 7 V, 10 V


Optima Compact de la serie Veriflow diseñada para la medición del caudal y la presión diferencial.

Medición del caudal

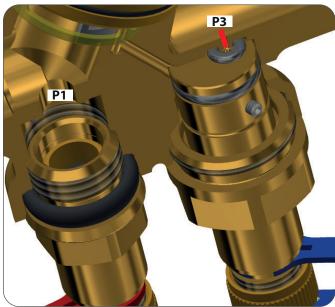
Para medir el caudal, introduzca una llave hexagonal de 4 mm en la toma P/T azul y gire en el sentido de las agujas del reloj hasta que el indicador llegue al tope marcado con Q.

Coloque las agujas de medición del manómetro en las tomas P/T de color rojo y azul.



Ahora el manómetro mide la presión diferencial (P1-P2) a través del preajuste KV y el caudal puede calcularse mediante las fórmulas siquientes.

Utilice los valores KV de las tablas de las páginas 8 y 9.


Cálculo del caudal								
$Q=Kv\cdot \sqrt{\Delta p}$	$Q = m^3/h$ $\Delta p = Bar$							
$Q = Kv \cdot 100 \cdot \sqrt{\Delta p}$	Q = I/h $\Delta p = kPa$							
$Q = (Kv \cdot \sqrt{\Delta p})/36$	Q = I/s $\Delta p = kPa$							

Medición Mínima ΔP

Para medir la mínima presión diferencial, introduzca una llave hexagonal de 4 mm en la toma P/T azul y gire en sentido contrario a las agujas del reloj hasta que el indicador llegue al tope marcado con P.

Coloque las agujas de conexión del manómetro en las tomas P/T de color rojo y azul.

Ahora el manómetro mide la presión diferencial (P1-P3) a través de toda la válvula y la presión de la bomba se puede optimizar para ahorrar energía.

Utilice la presión mínima diferencial necesaria para el caudal nominal según las tablas de la página 8-9 o utilice la APP de Frese.

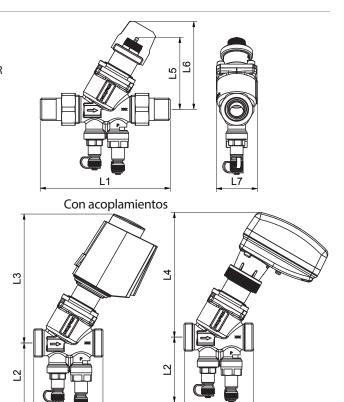
Datos técnicos

Cuerpo de válvula

DN10 a DN32: Latón DZR

DN40 - DN50: Fundición de hierro o latón DZR

Controlador presión diferencial: PPS 40% vidrio **Muelle:** Acero inoxidable


Diafragma:HNBRJunta tórica:EPDMPresión Nominal:PN 25Máx. Presión Diferencial:800 kPa

Tomas para medir la presión diferencial:- Diámetro máx: Ø3,2mm
- Longitud: 25-40 mm

Rosca: ISO 228 **Rango de temperatura:** 0 a +120 °C

Cuando se utiliza a temperaturas por debajo de 0 °C, debe utilizarse el calentador del eje.

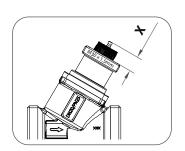
El sistema de tuberías debe estar convenientemente purgado para evitar el riesgo de bolsas de aire. Pueden utilizarse mezclas de glicol hasta el 50% (incluso etileno y propileno). Frese A/S no se hace responsable si se utiliza cualquier actuador distinto al especificado por Frese. Recomendación: tratamiento del agua según VDI 2035

	DIMENSIONES Y PESO												
Dimensiones		DN10	DN15		DN	N20	DN25/ DN25L		DN32		DN40	DN50	
Tipo	Conexión	M/M G 1/2	M/M G 3/4	H/H G 1/2	M/M G 1	H/H G 3/4	M/M G 1-1/4	H/H G 1	M/M G 1-1/2	H/H G 1-1/4	M/M G 1-1/2	H/H G 2	
	L	65	65	75	70	79	78/ 104	83/100	104	104	138	138	
	L1	114	122	-	131	-	-	-	-	-	-	-	
	L2	57	57	57	57	57	59/ 63	59/ 63	68	68	71	77	
I am aite d	L3	121	121	121	121	121	124/139	124/ 139	139	139	-	-	
Longitud	L4	117	117	117	117	117	120/135	120/ 135	135	135	264	264	
	L5	68	68	68	68	68	68/ 85	68/ 85	85	85	143	143	
	L6	83	83	83	83	83	83/100	83/100	100	100	-	-	
	L7	38	38	38	38	38	38/ 63	38/ 63	63	63	90	90	
Peso		0,45	0,47	0,52	0,50	0,54	0,62/ 1,12	0,65/ 1,14	1,27	1,27	3,28	3,71	

	CAUDAL										
		DN10 - DN15	DN10-DN20	DN15 - DN20			DN25	DN25L	DN32	DN40	DN50
Rango		Ва	ijo		Alto			Alto	-	-	-
Carrera	mm	2,5	5,0	2,5	5,0	5,5	5,5	5,5	5,5	15	15
	l/h	30 - 200	65 - 370	100 - 575	220 - 1.330	300-1.800	280-1.800	600-3.609	550-4.001	1.370-9.500	1.400-11.500
Caudal	l/s	0,008-0,056	0,018-0,103	0,028-0,160	0,061-0,369	0,083-0,500	0,078-0,500	0,167-1,003	0,153-1,111	0,381-2,639	0,389-3,194
	gpm	0,13 - 0,88	0,29 - 1,63	0,44 - 2,53	0,97 - 5,85	1,32-7,93	1,23-7,93	2,64-15,89	2,42-17,62	6,03-41,83	6,16-50,63

Actuadores Electrotérmicos Normalmente cerrados DN10-DN32

Dimensiones Válvula (Carrera válvula)	Señal de control	Referencia (Tensión de alimentación)
DN10-DN20	On/Off	48-5525 (24 V CA/CC)
(2.5 mm)	On/On	48-5526 (230 V CA)
DN10-DN32	0/0#	48-5527 (24 V CA/CC)
(5.0 mm / 5.5 mm)	On/Off	48-5528 (230 V CA)
DN10-DN32 (2.5 mm / 5.0 mm / 5.5 mm)	0-10 V	48-5529 (24 V CA)
DN10-DN32 (2.5 mm / 5.0 mm / 5.5 mm)	0-10 V	48-5529-1 (24 V CC)


Actuadores mecánicos DN10-DN50

Dimensiones Válvula (Carrera válvula)	Señal de control	Referencia (Tensión de alimentación)
DN10-DN32 [5.0 mm / 5.5 mm]	0-10 V / 4-20 mA	53-1180 [24 V CA/CC]
DN10-DN32 [2.5 mm / 5.0 mm / 5.5 mm]	3-ptos / On/Off	53-1181 [24 V CA]
DN10-DN32 [2.5 mm / 5.0 mm / 5.5 mm]	3-ptos / On/Off	53-1182 [230 V CA]
DN10-DN32 [5.0 mm / 5.5 mm]	0-10 V / 4-20 mA	53-1183 [24 V CA/CC]
DN10-DN32 [2.5 mm / 5.0 mm / 5.5 mm]	0-10 V / 4-20 mA	53-1184 [24 V CA/CC]
DN40-DN50 [15 mm]	0-10 V / 3-ptos	53-1296 [24 V CA/CC]

Especificaciones actuadores:

Puede consultar la gama completa de actuadores y sus características detalladas en la <u>página web www.frese.es.</u>

Requerimientos del actuador para válvulas de DN10 a DN32

Dimensiones de "x" con la válvula cerrada:

Carrera de 2,5 mm = 11,4 mm

Carrera de 5,0 mm = 9,3 mm

Carrera de 5.5 mm = 8.8 mm

Mínima fuerza del actuador: 100N

Conexión del actuador: M30 x 1,5 mm

Programa de producto

Dimension	Commun	Constall/h	Gwddl/6		
Dimensiones	Carrera	Caudal I/h	Caudal I/s	M/M	H/H
DN10	Q _B - 2,5 mm	30-200	0,008-0,056	53-5320	-
	Q _B - 5,0 mm	65-370	0,018-0,103	53-5329	-
	Q _B - 2,5 mm	30-200	0,008-0,056	53-5322	53-5362
DN15	Q _B - 5,0 mm	65-370	0,018-0,103	53-5330	53-5370
DIVIS	Q _A - 2,5 mm	100-575	0,028-0,160	53-5324	53-5364
	Q _A - 5,0 mm	220-1.330	0,061-0369	53-5325	53-5365
	Q _A - 2,5 mm	100-575	0,028-0,160	53-5332	53-5372
DN20	Q _A - 5,0 mm	220-1.330	0,061-0369	53-5328	53-5368
	Q _A - 5,5 mm	300-1.800	0,083-0,500	53-5331	53-5338
DN25	Q _B - 5,5 mm	280-1.800	0,078-0,500	53-5337	53-5339
DN25L	Q _A - 5,5 mm	600-3.609	0,167-1,003	53-5333	53-5373
DN32	5,5 mm	550-4.001	0,153-1,111	53-5334	53-5374
DNAO	15	1 270 0 500	0.201.2.620		53-5375 Fundicion de hierro
DN40	15 mm	1.370-9.500	0,381-2,639	-	53-5378 Latón DZR
DNEO	15 mm	1 400 11 500	0.290.2.104		53-5376 Fundicion de hierro
DN50	15 mm	1.400-11.500	0,389-3,194	-	53-5379 Latón DZR

Accesorios

 Referencia	Producto	Diámetro	Conexión	Material	
43-1330	El suministro incluye	DN10	G½"-R³/8"		
43-2330	dos racores y dos	DN15	G¾"-R½"	Latón DZR, CW602N	
43-3330	acoplamientos.	DN20	G1"-R¾"		

	Referencia	Producto	Diámetro	Uso	Material / Máx. Ta
_	38-0857		DN10-15-20		
	38-0858	Carcasa de	DN25	Solo para	EPP / 120 °C
	38-0859	aislamiento	DN25L-32	aplicaciones de calefacción	
	38-0878		DN40-50		EPE / 90 °C

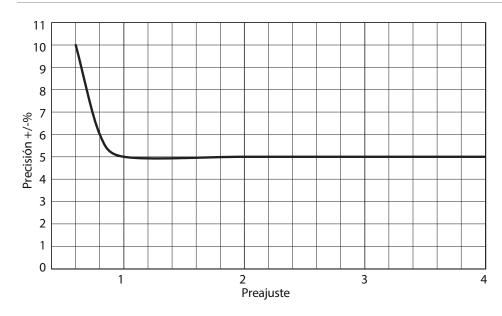
	Referencia	Producto	Alimentación	Para válvulas	Para actuadores
	58-8956	Calentador de eje	24 V CC/CA, 10W	DN10-DN32	Para todos los actuadores DN 10 / DN 32
*	58-8951	Calentador de eje	24 VCA, 50 W	DN40-DN50	Tipo-01 a Tipo-07

Ajuste y caudal

		CAUDAL	. BAJO 2,5 DN	110/DN15			CAUDAL BA	JO 5,0 DN10	/DN15/DN20	
Preajuste	l/h	l/s	gpm	Min.Δp kPa	Señal KV	l/h	l/s	gpm	Min.Δp kPa	Señal KV
0,5	30	0,008	0,13	14	0,121					
0,6	35	0,010	0,15	14	0,124	65	0,018	0,29	15	0,134
0,8	45	0,012	0,20	14	0,136	83	0,023	0,37	15	0,184
1,0	54	0,015	0,24	14	0,153	101	0,028	0,44	15	0,231
1,2	64	0,018	0,28	15	0,174	119	0,033	0,52	15	0,275
1,4	74	0,020	0,32	15	0,198	137	0,038	0,60	15	0,317
1,6	83	0,023	0,37	15	0,224	155	0,043	0,68	15	0,357
1,8	93	0,026	0,41	15	0,250	173	0,048	0,76	16	0,397
2,0	103	0,029	0,45	15	0,277	191	0,053	0,84	16	0,436
2,2	113	0,031	0,50	15	0,303	209	0,058	0,92	16	0,475
2,4	122	0,034	0,54	15	0,328	226	0,063	1,00	16	0,515
2,6	132	0,037	0,58	15	0,352	244	0,068	1,08	16	0,555
2,8	142	0,039	0,62	15	0,375	262	0,073	1,15	16	0,595
3,0	151	0,042	0,67	15	0,397	280	0,078	1,23	16	0,636
3,2	161	0,045	0,71	15	0,418	298	0,083	1,31	17	0,677
3,4	171	0,047	0,75	16	0,439	316	0,088	1,39	17	0,718
3,6	181	0,050	0,79	16	0,460	334	0,093	1,47	17	0,760
3,8	190	0,053	0,84	16	0,482	352	0,098	1,55	17	0,800
4,0	200	0,056	0,88	16	0,506	370	0,103	1,63	17	0,839

		CAUDAL	ALTO 2,5 DN	115/DN20	CAUDAL ALTO 5,0 DN15/DN20					
Preajuste	l/h	l/s	gpm	Min.Δp kPa	Señal KV	l/h	l/s	gpm	Min.Δp kPa	Señal KV
0,6	100	0,028	0,44	15	0,250	220	0,061	0,97	16	0,595
0,8	128	0,036	0,56	15	0,314	285	0,079	1,26	17	0,755
1,0	156	0,043	0,69	15	0,378	351	0,097	1,54	17	0,913
1,2	184	0,051	0,81	16	0,442	416	0,116	1,83	17	1,07
1,4	212	0,059	0,93	16	0,507	481	0,134	2,12	18	1,23
1,6	240	0,067	1,06	16	0,574	546	0,152	2,41	18	1,39
1,8	268	0,074	1,18	16	0,642	612	0,170	2,69	19	1,55
2,0	296	0,082	1,30	17	0,713	677	0,188	2,98	19	1,71
2,2	324	0,090	1,42	17	0,786	742	0,206	3,27	20	1,88
2,4	351	0,098	1,55	17	0,860	808	0,224	3,56	20	2,04
2,6	379	0,105	1,67	17	0,936	873	0,242	3,84	20	2,21
2,8	407	0,113	1,79	17	1,01	938	0,261	4,13	20	2,38
3,0	435	0,121	1,92	18	1,09	1004	0,279	4,42	21	2,55
3,2	463	0,129	2,04	18	1,17	1069	0,297	4,71	21	2,72
3,4	491	0,136	2,16	18	1,24	1134	0,315	4,99	21	2,88
3,6	519	0,144	2,29	18	1,31	1199	0,333	5,28	21	3,03
3,8	547	0,152	2,41	18	1,38	1265	0,351	5,57	21	3,18
4,0	575	0,160	2,53	19	1,44	1330	0,369	5,85	22	3,31

		CAUDAL	. ALTO 5,5 DN	15/DN20			CAUE	OAL BAJO 5,5	5 DN25	
Preajuste	l/h	l/s	gpm	Min.Δp kPa	Señal KV	l/h	l/s	gpm	Min.Δp kPa	Señal KV
0,6	300	0,083	1,32	18	0,675	280	0,078	1,23	15	0,647
0,8	395	0,110	1,74	21	0,849	356	0,099	1,57	16	0,770
1,0	480	0,133	2,11	22	1,03	430	0,119	1,89	16	0,916
1,2	558	0,155	2,46	23	1,22	502	0,139	2,21	16	1,08
1,4	632	0,176	2,78	23	1,41	574	0,159	2,53	17	1,26
1,6	704	0,196	3,10	23	1,61	647	0,180	2,85	17	1,46
1,8	776	0,216	3,42	23	1,81	722	0,201	3,18	17	1,66
2,0	850	0,236	3,74	23	2,01	800	0,222	3,52	18	1,88
2,2	927	0,258	4,08	23	2,21	881	0,245	3,88	19	2,09
2,4	1008	0,280	4,44	24	2,41	967	0,269	4,26	20	2,31
2,6	1094	0,304	4,82	26	2,61	1057	0,294	4,65	21	2,52
2,8	1185	0,329	5,22	27	2,80	1151	0,320	5,07	22	2,73
3,0	1280	0,356	5,64	29	2,99	1250	0,347	5,50	24	2,93
3,2	1380	0,383	6,07	32	3,17	1353	0,376	5,96	26	3,13
3,4	1483	0,412	6,53	34	3,34	1460	0,406	6,43	29	3,32
3,6	1589	0,441	6,99	37	3,51	1571	0,436	6,92	32	3,49
3,8	1695	0,471	7,46	39	3,66	1685	0,468	7,42	35	3,65
4,0	1800	0,500	7,93	40	3,80	1800	0,500	7,93	39	3,80



Ajuste y caudal

	CAUDAL ALTO 5,5 DN25L					DN32					
Preajuste	l/h	l/s	gpm	Min.Δp kPa	Señal KV	l/h	l/s	gpm	Min.Δp kPa	Señal KV	
0,6	600	0,167	2,64	17	1,28	550	0,153	2,42	18	1,44	
0,8	777	0,216	3,42	17	1,68	753	0,209	3,32	18	1,83	
1,0	954	0,265	4,20	17	2,09	956	0,266	4,21	18	2,20	
1,2	1131	0,314	4,98	18	2,49	1159	0,322	5,10	18	2,57	
1,4	1308	0,363	5,76	18	2,89	1362	0,378	6,00	18	2,94	
1,6	1485	0,413	6,54	18	3,27	1565	0,435	6,89	19	3,31	
1,8	1662	0,462	7,32	18	3,65	1768	0,491	7,79	19	3,69	
2,0	1839	0,511	8,10	18	4,01	1971	0,548	8,68	19	4,08	
2,2	2016	0,560	8,88	18	4,37	2174	0,604	9,57	19	4,48	
2,4	2193	0,609	9,66	18	4,72	2377	0,660	10,47	20	4,89	
2,6	2370	0,658	10,44	19	5,07	2580	0,717	11,36	20	5,31	
2,8	2547	0,708	11,22	19	5,42	2783	0,773	12,26	21	5,75	
3,0	2724	0,757	12,00	20	5,78	2986	0,829	13,15	22	6,19	
3,2	2901	0,806	12,78	20	6,16	3189	0,886	14,04	23	6,64	
3,4	3078	0,855	13,55	21	6,56	3392	0,942	14,94	24	7,09	
3,6	3255	0,904	14,33	21	7,00	3595	0,999	15,83	25	7,53	
3,8	3432	0,953	15,11	22	7,49	3798	1,055	16,73	26	7,97	
4,0	3609	1,003	15,89	23	8,03	4001	1,111	17,62	28	8,40	

	DN40					DN50					
Preajuste	l/h	l/s	gpm	Min.Δp kPa	Señal KV	l/h	l/s	gpm	Min.Δp kPa	Señal KV	
0,6	1370	0,381	6,03	10	4,74	1400	0,389	6,16	10	4,43	
0,8	1681	0,467	7,40	10	5,82	1724	0,479	7,59	10	5,35	
1,0	2000	0,556	8,81	10	6,85	2050	0,569	9,03	11	6,30	
1,2	2333	0,648	10,27	10	7,86	2393	0,665	10,54	11	7,28	
1,4	2686	0,746	11,83	10	8,87	2766	0,768	12,18	11	8,31	
1,6	3063	0,851	13,48	10	9,89	3178	0,883	13,99	12	9,36	
1,8	3467	0,963	15,26	11	10,9	3638	1,011	16,02	12	10,5	
2,0	3900	1,083	17,17	11	12,0	4150	1,153	18,27	13	11,6	
2,2	4364	1,212	19,21	12	13,1	4717	1,310	20,77	14	12,8	
2,4	4857	1,349	21,39	13	14,3	5339	1,483	23,51	16	14,0	
2,6	5380	1,494	23,69	14	15,4	6014	1,671	26,48	18	15,3	
2,8	5928	1,647	26,10	15	16,7	6737	1,871	29,66	20	16,6	
3,0	6500	1,806	28,62	17	17,9	7500	2,083	33,02	22	17,9	
3,2	7090	1,969	31,22	19	19,2	8295	2,304	36,52	25	18,7	
3,4	7692	2,137	33,87	21	20,4	9108	2,530	40,10	27	19,6	
3,6	8300	2,306	36,54	22	21,7	9925	2,757	43,70	30	20,4	
3,8	8906	2,474	39,21	24	22,9	10729	2,980	47,24	33	21,3	
4,0	9500	2,639	41,83	25	24,1	11500	3,194	50,63	36	22,1	

Precisión de la medición del caudal mediante la señal KV

Cuando se utiliza la señal KV para la medición del caudal, la precisión es de $\pm 5\%$ del del caudal real. Véase la curva de la izquierda.

Para un caudal inferior a 200 l/h, la medición del caudal tiene una precisión de +/- 10 l/h.

La curva es aplicable independientemente de la posición de montaje de la OPTIMA Compact de la serie Veriflow.

La precisión de los valores KV sigue la norma BS 7350, para dispositivos de medición de caudal en sistemas de calefacción y refrigeración.

Especificaciones técnicas

- La longitud de la carrera debe ser independiente del ajuste del caudal. La válvula tendrá control de la carrera completa en todos los ajustes de caudal y la carrera no debe reducirse debido al ajuste del caudal.
- Con las tomas P/T se puede medir tanto la presión diferencial P1-P2 para verificar el caudal, como la presión diferencial P1-P3 para la
 optimización de la bomba.
- El control proporcional y el ajuste del caudal deben combinarse en un único equipo que disponga de un movimiento lineal proporcional y un ajuste del caudal radial.
- La curva característica de la válvula no debe variar según el caudal ajustado.
- · La combinación del ajuste del caudal y del control proporcional debe ser independiente de la presión.
- La curva característica de la válvula debe ser independiente del ajuste del caudal.
- La válvula de equilibrado dinámico y control proporcional independiente de la presión debe combinar en un solo cuerpo el ajuste del caudal, el control de la presión diferencial y el control proporcional.
- El cuerpo de las válvulas de DN10 a DN32 debe fabricarse en latón DZR y en hierro fundido las de DN40 y DN50.
- · La válvula debe tener un muelle de acero inoxidable, un diafragma de HNBR y juntas tóricas de EPDM.
- El cuerpo de la válvula debe ser PN25 y ser adecuada para 120 ° C.
- · La válvula tendrá una rosca según ISO 228.
- · La válvula deberá tener una presión diferencial de operación máxima de 800 kPa (8 Bar).
- · La válvula debe tener una escala de preajuste de paso continuo ajustable externo desde el caudal mínimo hasta el máximo.
- La válvula debe poder cerrarse contra una presión diferencial máxima de 800 kPa (8 bar), con una tasa de fuga máxima de 0,01% del caudal nominal máximo en cumplimiento con la norma EN1349 Clase IV.
- Las válvulas de control independientes de la presión se deben probar de acuerdo con el documento BSRIA BTS.1 'Método de prueba para
 presión. El fabricante debe proporcionar los resultados de dicha prueba.

Frese A/S no se responsabiliza de los posibles errores de sus catálogos, folletos y otros tipos de documentación impresa. Frese A/S se reserva el derecho de modificar sus productos sin notificación previa, incluso de aquellos cuyo pedido haya sido tramitado siempre y cuando no se vean afectadas sus especificaciones. Todas las marcas registradas en este material son propiedad de Frese A/S. Todos los derechos reservados.